Q1:

Using appropriate properties find:

$$(i)$$
 $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$

(ii)
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

Answer:

(i)

$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} = -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$

(Using commutativity of rational numbers)

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2}{3} + \frac{1}{6}\right) + \frac{5}{2} \qquad \text{(Distributivity)}$$

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2 \times 2 + 1}{6}\right) + \frac{5}{2} = \left(-\frac{3}{5}\right) \times \left(\frac{5}{6}\right) + \frac{5}{2}$$

$$= \left(-\frac{3}{6}\right) + \frac{5}{2} = \left(\frac{-3 + 5 \times 3}{6}\right) = \left(\frac{-3 + 15}{6}\right)$$

$$= \frac{12}{6} = 2$$

(ii)

$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5} = \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$$
 (By commutativity)

$$= \frac{2}{5} \times \left(-\frac{3}{7} + \frac{1}{14} \right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-3 \times 2 + 1}{14} \right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14} \right) - \frac{1}{4}$$

$$= -\frac{1}{7} - \frac{1}{4}$$

$$= \frac{-4 - 7}{28} = \frac{-11}{28}$$
(By distributivity)

Q2:

Write the additive inverse of each of the following:

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

Answer:

(i)
$$\frac{2}{8}$$

Additive inverse = $-\frac{2}{8}$

$$-\frac{5}{9}$$

$$\frac{-6}{-5} = \frac{6}{5}$$

$$\frac{2}{(iv)} = \frac{-2}{9}$$

Additive inverse $=\frac{2}{9}$

$$\frac{19}{-6} = \frac{-19}{6}$$

 $Additive inverse = \frac{19}{6}$

Q3:

Verify that -(-x) = x for.

(i)
$$x = \frac{11}{15}$$
 (ii) $x = -\frac{13}{17}$

Answer:

(i)
$$x = \frac{11}{15}$$

The additive inverse of $x = \frac{11}{15}$ is $-x = -\frac{11}{15}$ as $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$

This equality $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$ represents that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$ or it can be said that $-\left(-\frac{11}{15}\right) = \frac{11}{15}$ i.e., $-\left(-x\right) = x$

(ii)
$$x = -\frac{13}{17}$$

 $x = -\frac{13}{17} - x = \frac{13}{17} - \frac{13}{17} - \frac{13}{17} = 0$ The additive inverse of

This equality
$$-\frac{13}{17} + \frac{13}{17} = 0$$
 represents that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$ i.e., $-(-x) = x$

Q4:

Find the multiplicative inverse of the following.

(i)
$$^{-13}$$
 (ii) $^{\frac{-13}{19}}$ (iii) $^{\frac{1}{5}}$

(iv)
$$\frac{-5}{8} \times \frac{-3}{7}$$
 (v) $-1 \times \frac{-2}{5}$ (vi) - 1

Answer:

$$(i) - 13$$

Multiplicative inverse =
$$-\frac{1}{13}$$

$$\frac{-13}{19}$$

Multiplicative inverse =
$$-\frac{19}{13}$$

(iii)
$$\frac{1}{5}$$

Multiplicative inverse = 5

$$\frac{5}{(iv)} - \frac{5}{8} \times -\frac{3}{7} = \frac{15}{56}$$

$$Multiplicative inverse = \frac{56}{15}$$

$$(v)$$
 $-1 \times -\frac{2}{5} = \frac{2}{5}$

Multiplicative inverse $=\frac{5}{2}$

Multiplicative inverse = - 1

Q5:

Name the property under multiplication used in each of the following:

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$

(ii)
$$-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

(iii)
$$\frac{-19}{29} \times \frac{29}{-19} = 1$$

Answer:

$$-\frac{4}{5} \times 1 = 1 \times -\frac{4}{5} = -\frac{4}{5}$$

1 is the multiplicative identity.

- (ii) Commutativity
- (iii) Multiplicative inverse

Q6:

Multiply
$$\frac{6}{13}$$
 by the reciprocal of $\frac{-7}{16}$.

Answer:

$$\frac{6}{13} \times \left(\text{Reciprocal of } -\frac{7}{16} \right) = \frac{6}{13} \times -\frac{16}{7} = -\frac{96}{91}$$

Q7:

Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right)$ as $\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.

Answer:

Associativity

Q8:

Is
$$\frac{8}{9}$$
 the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Answer:

If it is the multiplicative inverse, then the product should be 1.

However, here, the product is not 1 as

$$\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \left(-\frac{9}{8}\right) = -1 \neq 1$$

Q9:

Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

Answer:

$$3\frac{1}{3} = \frac{10}{3}$$

$$0.3 \times 3\frac{1}{3} = 0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$$

Here, the product is 1. Hence, 0.3 is the multiplicative inverse of $3\frac{1}{3}$.

Q10:
Write:
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.
Answer:
(i) 0 is a rational number but its reciprocal is not defined.
(ii) 1 and -1 are the rational numbers that are equal to their reciprocals.
(iii) 0 is the rational number that is equal to its negative.
Q11:
Fill in the blanks.
(i) Zero has reciprocal.
(ii) The numbers and are their own reciprocals
(iii) The reciprocal of - 5 is
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is
(v) The product of two rational numbers is always a
(vi) The reciprocal of a positive rational number is
Answer:
(i) No
(ii) 1, - 1

$$-\frac{1}{5}$$

- (iv) x
- (v) Rational number
- (vi) Positive rational number