Exercise 6.3

Question 1:

What could be the possible 'one's' digits of the square root of each of the following numbers:

- (i) 9801
- (ii) 99856
- (iii) 998001
- (iv) 657666025

Answer 1:

Since, Unit's digits of square of numbers are 0, 1, 4, 5, 6 and 9. Therefore, the possible unit's digits of the given numbers are:

(i) 1

- (ii) 6
- (iii) 1
- (iv) 5

Ouestion 2:

Without doing any calculation, find the numbers which are surely not perfect squares:

- (i) 153
- (ii) 257
- (iii) 408
- (iv) 441

Answer 2:

Since, all perfect square numbers contain their unit's place digits 0, 1, 4, 5, 6 and 9.

- (i) But given number 153 has its unit digit 3. So it is not a perfect square number.
- (ii) Given number 257 has its unit digit 7. So it is not a perfect square number.
- (iii) Given number 408 has its unit digit 8. So it is not a perfect square number.
- (iv) Given number 441 has its unit digit 1. So it would be a perfect square number

Ouestion 3:

Find the square roots of 100 and 169 by the method of repeated subtraction.

Answer 3:

By successive subtracting odd natural numbers from 100,

$$64 - 13 = 51$$

$$19 - 19 = 0$$

This successive subtraction is completed in 10 steps.

Therefore
$$\sqrt{100} = 10$$

By successive subtracting odd natural numbers from 169,

$$25 - 25 = 0$$

$$48 - 23 = 25$$

This successive subtraction is completed in 13 steps.

Therefore
$$\sqrt{169} = 13$$

Question 4:

Find the square roots of the following numbers by the Prime Factorization method:

- (i) 729
- (iii) 1764
- 7744 (v)
- 5929 (vii)
- (ix) 529

- 400 (ii)
- (iv) 4096
- (vi) 9604
- (viii) 9216
- (x) 8100

Answer 4:

(i)
$$729$$

 $\sqrt{729} = \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3}$
= 3 x 3 x 3
= 27

(ii)
$$400$$

$$\sqrt{400} = \sqrt{2 \times 2 \times 2 \times 2 \times 5 \times 5}$$

$$= 2 \times 2 \times 5$$

$$= 20$$

400	2
200	2
100	2
50	2
25	5
5	5
1	

(iii) 1764

$$\sqrt{1764} = \sqrt{2 \times 2 \times 3 \times 3 \times 7 \times 7}$$

= 2 x 3 x 7
= 42

2	1764
2	882
3	441
3	147
7	49
7	7
	1

409	2
204	2
102	2
51	2
25	2
12	2
6	2
3	2
1	2
	2
	2
-	2

(v) 7744

$$\sqrt{7744} = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 11}$$

= 2 x 2 x 2 x 11
= 88

2	7744
2	3872
2	1936
2	968
2	484
2	242
11	121

(vi)
$$9604$$

 $\sqrt{9604} = \sqrt{2 \times 2 \times 7 \times 7 \times 7 \times 7}$
= 2 x 7 x 7
= 98

9604
4802
2401
343
49
7
1

(vii) 5929

$$\sqrt{5929} = \sqrt{7 \times 7 \times 11 \times 11}$$

= 7 x 11
= 77

7	5929
7	847
11	121
11	11
	1

216 608 304 152 576
304 152
152
576
288
144
72
36
18
9
3
1

(ix)
$$529$$

 $\sqrt{529} = \sqrt{23 \times 23}$
= 23

23

(x)
$$8100$$

 $\sqrt{8100} = \sqrt{2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5}$
 $= 2 \times 3 \times 3 \times 5$
 $= 90$

2

3

3

5

5

Question 5:

For each of the following numbers, find the smallest whole number by which it s multiplied so as to get a perfect square number. Also, find the square root of th number so obtained:

(i)	252	(ii)	180
(iii)	1008	(iv)	2028
(v)	1458	(vi)	768

Answer 5:

nswer 5:
(i)
$$252 = 2 \times 2 \times 3 \times 3 \times 7$$

Here, prime factor 7 has no pair. Therefore 252 must be multiplied by 7 to make it a perfect square.

$$\therefore 252 \times 7 = 1764$$
And $\sqrt{1764} = 2 \times 3 \times 7 = 42$

(ii)	180 = 2 x 2 x 3 x 3 x 5 Here, prime factor 5 has no pair. Therefore 180 must be	2	180
	multiplied by 5 to make it a perfect square. $180 \times 5 = 900$	2	90
∴ And	$\sqrt{900} = 2 \times 3 \times 5 = 30$	3	45
		3	15
		5	5
			1

(iii)	1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7		
	Here, prime factor 7 has no pair. Therefore 1008 must be	2	1008
	multiplied by 7 to make it a perfect square. $1008 \times 7 = 7056$	2	504
And	$\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$	2	252
		2	126
		3	63
		3	21
		7	7
			1

(iv)	$2028 = 2 \times 2 \times 3 \times 13 \times 13$		
	Here, prime factor 3 has no pair. Therefore 2028 must be	2	2028
.:·	multiplied by 3 to make it a perfect square. 2028 x 3 = 6084	2	1014
And	$\sqrt{6084} = 2 \times 2 \times 3 \times 3 \times 13 \times 13 = 78$	3	507
		13	169
		13	13
			1

Here, prime factor 2 has no pair. Therefore 1458 must be multiplied by 2 to make it a perfect square.

And
$$\sqrt{2916} = 2 \times 3 \times 3 \times 3 = 54$$

2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

Here, prime factor 3 has no pair. Therefore 768 must be multiplied by 3 to make it a perfect square.

And
$$\sqrt{2304} = 2 \times 2 \times 2 \times 2 \times 3 = 48$$

2	768
2	384
2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

Question 6:

For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square. Also, find the square root of the square number so obtained:

(i) 252

(ii) 2925

(iii) 396

(iv) 2645

(v) 2800

(vi) 1620

Answer 6:

(i) 252 = 2 x 2 x 3 x 3 x 7 Here, prime factor 7 has no pair. Therefore

Here, prime factor 7 has no pair. Therefore 252 must be divided by 7 to make it a perfect square.

And $\sqrt{36} = 2 \times 3 = 6$

2	252
2	126
3	63
3	21
7	7
	1

(ii) $2925 = 3 \times 3 \times 5 \times 5 \times 13$

Here, prime factor 13 has no pair. Therefore 2925 must be divided by 13 to make it a perfect square.

And $\sqrt{225} = 3 \times 5 = 15$

3	2925
3	975
5	325
5	65
13	13
	1

(iii) $396 = 2 \times 2 \times 3 \times 3 \times 11$

Here, prime factor 11 has no pair. Therefore 396 must be divided by 11 to make it a perfect square.

And $\sqrt{36} = 2 \times 3 = 6$

396	2	
198	2	
99	3	
33	3	
11	11	
1		

(iv) $2645 = 5 \times 23 \times 23$

Here, prime factor 5 has no pair. Therefore 2645 must be divided by 5 to make it a perfect square.

And $\sqrt{529} = 23 \times 23 = 23$

5	2645
23	529
23	23
	1

$$\therefore 2800 \div 7 = 400$$
And $\sqrt{400} = 2 \times 2 \times 5 = 20$

$$\therefore 1620 \div 5 = 324$$
And $\sqrt{324} = 2 \times 3 \times 3 = 18$

Question 7:

The students of Class VIII of a school donated `2401 in all, for Prime Minis Relief Fund. Each student donated as many rupees as the number of studen Find the number of students in the class.

Answer 7:

Here, Donated money = '2401

Let the number of students be x.

Therefore donated money = $x \times x$

According to question,

$$x^2 = 2401$$

$$\Rightarrow \qquad x = \sqrt{2401} = \sqrt{7 \times 7 \times 7 \times 7}$$

$$\Rightarrow$$
 $x = 7 \times 7 = 49$

Hence, the number of students is 49.

Question 8:

2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Answer 8:

Here, Number of plants = 2025

Let the number of rows of planted plants be x.

And each row contains number of plants = x

According to question,

$$x^2 = 2025$$

$$\Rightarrow \qquad x = \sqrt{2025} = \sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5}$$

$$\Rightarrow$$
 $x = 3 \times 3 \times 5 = 45$

Hence, each row contains 45 plants.

3	2025
3	675
3	225
3	75
5	25
5	5
	1

Question 9:

Find the smallest square number that is divisible by each of the numbers 4, 9 and 10.

Answer 9:

L.C.M. of 4, 9 and 10 is 180.

Prime factors of $180 = 2 \times 2 \times 3 \times 3 \times 5$

Here, prime factor 5 has no pair. Therefore 180 must be multiplied by 5 to make it a perfect square.

Hence, the smallest square number which is divisible by 4, 9 and 10 is 900.

2	180
2	90
3	45
3	15
5	5
	1

Question 10:

Find the smallest square number that is divisible by each of the numbers 8, 15 and 20.

Answer 10:

L.C.M.	of 8.	15	and	20	is	120.
~ ~	O. 0,				•••	

Prime factors of 120 = 2 x 2 x 2 x 3 x 5	2	120
Here, prime factor 2, 3 and 5 has no pair. Therefore 120 must be multiplied by	2	60
2 x 3 x 5 to make it a perfect square.	3	30
$\therefore 120 \times 2 \times 3 \times 5 = 3600$ Hence the smallest severe number which is divisible by 0.15 and 20.	3	15
Hence, the smallest square number which is divisible by 8, 15 and 20 is 3600.	5	5
		1