Mathematics

(www.tiwariacademy.in) (Chapter - 2)(Polynomials) (Class - 9)

Exercise 2.1

Question 1:

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

(iv)
$$y + \frac{2}{y}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$
 (iv) $y + \frac{2}{y}$ (v) $x^{10} + y^3 + t^{50}$

Answer 1:

(i)
$$4x^2 - 3x + 7$$

Polynomials in one variable as it contains only one variable x.

(ii)
$$y^2 + \sqrt{2}$$

Polynomials in one variable as it contains only one variable y.

(iii) $3\sqrt{t} + t\sqrt{2} = 3t^{\frac{1}{2}} + t\sqrt{2}$, It is in one variable but not a polynomial as it contains $(t^{\frac{1}{2}})$, in which power is not a whole number.

(iv) $y + \frac{2}{y} = y + 2y^{-1}$, It is in one variable but not a polynomial as it contains (y^{-1}) , in which power is not a whole number.

(v) $x^{10} + y^3 + t^{50}$, It is a polynomials in three variable as it contains three variable (x, y, t).

Question 2:

Write the coefficients of x^2 in each of the following:

(i)
$$2 + x^2 + x$$

(ii)
$$2 - x^2 + x^3$$

(iii)
$$\frac{\pi}{2}x^2 + x^2$$

(iii)
$$\frac{\pi}{2}x^2 + x$$
 (iv) $\sqrt{2}x - 1$

Answer 2:

(i) $\ln 2 + x^2 + x$ the coefficient of x^2 is 1.

(ii) $\ln 2 - x^2 + x^3$ the coefficient of x^2 is -1.

(iii) $\ln \frac{\pi}{2} x^2 + x$ the coefficient of x^2 is

(iv) $\ln \sqrt{2}x - 1 = 0$. $x^2 + \sqrt{2}x - 1$ the coefficient of x^2 is 0.

Question 3:

Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Answer 3:

A binomial of degree $35 = x^{35} + 3$ and a monomial of degree $100 = 3x^{100}$

Question 4:

Write the degree of each of the following polynomials:

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4-y^2$$

Answer 4:

(i) The degree of $5x^3 + 4x^2 + 7x$ is 3.

(ii) The degree of $4-y^2$ is 2.

(iii) The degree of $5t - \sqrt{7} = 5t^1 - \sqrt{7}$ is 1.

(iv) The degree of $3 = 3x^0$ is 0.

Question 5:

Classify the following as linear, quadratic and cubic polynomials:

(i)
$$x^2 + x$$

(ii)
$$x - x^3$$

(iii)
$$y + y^2 + 4$$

(iv)
$$1+x$$

(v) 3t

Answer 5:

(i) $x^2 + x$ Quadratic polynomial.

(ii) x - x³ Cubic polynomial. (iv) 1 + x Linear polynomial.

(iii) $y + y^2 + 4$ Quadratic polynomial. (v) 3t Linear polynomial.

(vi) r2 Quadratic polynomial.

(vii) 7x3 Cubic polynomial.

(Chapter - 2)(Polynomials) (Class - 9) Exercise 2.2

Question 1:

Find the value of the polynomial $5x - 4x^2 + 3$ at:

(i)
$$x = 0$$

(ii)
$$x = -1$$

(iii) x = 2

Answer 1:

Let
$$p(x) = 5x - 4x^2 + 3$$

(i) Putting
$$x = 0$$
, we get: $p(0) = 5 \times 0 - 4(0)^2 + 3 = 3$

(ii) Putting
$$x = -1$$
, we get: $p(-1) = 5 \times (-1) - 4(-1)^2 + 3 = -5 - 4 + 3 = -6$

(iii) Putting
$$x = 2$$
, we get: $p(2) = 5 \times 2 - 4(2)^2 + 3 = 10 - 16 + 3 = -3$

Question 2:

Find p(0), p(1) and p(2) for each of the following polynomials:

(i)
$$p(y) = y^2 - y + 1$$

(ii)
$$p(t) = 2 + t + 2t^2 - t^3$$

(iii)
$$p(x) = x^3$$

(iv)
$$p(x) = (x-1)(x+1)$$

Answer 2:

(i)
$$p(y) = y^2 - y + 1$$

Putting
$$y = 0$$
, we get

$$p(0) = 0^2 - 0 + 1 = 1$$

Putting
$$y = 1$$
, we get

$$p(1) = 1^2 - 1 + 1 = 1$$

Putting
$$y = 2$$
, we get

$$p(2) = 2^2 - 2 + 1 = 3$$

(ii)
$$p(t) = 2 + t + 2t^2 - t^3$$

Putting
$$t = 0$$
, we get

$$p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2$$

Putting
$$t = 1$$
, we get

$$p(1) = 2 + 1 + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1 = 4$$

Putting
$$t = 2$$
, we get

$$p(2) = 2 + 2 + 2(2)^2 - (2)^3 = 2 + 2 + 8 - 8 = 4$$

(iii)
$$p(x) = x^3$$

Putting
$$x = 0$$
, we get

$$p(0) = (0)^3 = 0$$

Putting
$$x = 1$$
, we get

$$p(1) = (1)^3 = 1$$

Putting
$$x = 2$$
, we get

$$p(2) = (2)^3 = 8$$

(iv)
$$p(x) = (x-1)(x+1)$$

Putting
$$x = 0$$
, we get

$$p(0) = (0-1)(0+1) = -1$$

Putting
$$x = 1$$
, we get

$$p(1) = (1-1)(1+1) = 0 \times 2 = 0$$

Putting
$$x = 2$$
, we get

$$p(2) = (2-1)(2+1) = 3$$

Question 3:

Verify whether the following are zeroes of the polynomial, indicated against them.

(i)
$$p(x) = 3x + 1$$
; $x = -\frac{1}{3}$

(ii)
$$p(x) = 5x - \pi$$
; $x = \frac{4}{5}$

(iii)
$$p(x) = x^2 - 1$$
; $x = 1, -1$

(iv)
$$p(x) = (x+1)(x-2)$$
; $x = -1, 2$

(v)
$$p(x) = x^2$$
; $x = 0$

(vi)
$$p(x) = lx + m; \quad x = -\frac{m}{l}$$

(vii)
$$p(x) = 3x^2 - 1$$
; $x = -\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$

(viii)
$$p(x) = 2x + 1$$
; $x = \frac{1}{2}$

Answer 3:

(i)
$$p(x) = 3x + 1$$
; $x = -\frac{1}{3}$

Putting
$$x = -\frac{1}{3}$$
, we get

$$p\left(-\frac{1}{3}\right) = 3 \times \left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$$

Here,
$$p\left(-\frac{1}{3}\right) = 0$$
, Hence, $x = -\frac{1}{3}$ is a solution of $p(x) = 3x + 1$.

(ii)
$$p(x) = 5x - \pi$$
; $x = \frac{4}{5}$

Putting
$$x = \frac{4}{5}$$
, we get

$$p\left(\frac{4}{5}\right) = 5 \times \left(\frac{4}{5}\right) - \pi = 4 - \pi$$

Here,
$$p\left(\frac{4}{5}\right) \neq 0$$
, Hence, $x = \frac{4}{5}$ is not a solution of $p(x) = 5x - \pi$.

(iii)
$$p(x) = x^2 - 1$$
; $x = 1, -1$

Putting
$$x = 1$$
, we get

$$p(1) = (1)^2 - 1 = 1 - 1 = 0$$

Here,
$$p(1) = 0$$
, Hence, $x = 1$ is a solution of $p(x) = x^2 - 1$.

Putting
$$x = -1$$
, we get

$$p(-1) = (-1)^2 - 1 = 1 - 1 = 0$$

Here,
$$p(-1) = 0$$
, Hence, $x = -1$ is a solution of $p(x) = x^2 - 1$.

(iv)
$$p(x) = (x+1)(x-2)$$
; $x = -1, 2$

Putting
$$x = -1$$
, we get

$$p(-1) = (-1+1)(-1-2) = 0 \times (-3) = 0$$

Here,
$$p(-1) = 0$$
, Hence, $x = -1$ is a solution of $p(x) = (x + 1)(x - 2)$.

Putting
$$x = 2$$
, we get

$$p(2) = (2+1)(2-2) = 3 \times 9 = 0$$

Here,
$$p(2) = 0$$
, Hence, $x = 2$ is a solution of $p(x) = (x + 1)(x - 2)$.

(v)
$$p(x) = x^2$$
; $x = 0$

Putting
$$x = 0$$
, we get

$$p(0) = (0)^2 = 0$$

Here,
$$p(0) = 0$$
, Hence, $x = 0$ is a solution of $p(x) = x^2$.

(vi)
$$p(x) = lx + m$$
; $x = -\frac{m}{l}$

Putting
$$x = -\frac{m}{l}$$
, we get

$$p\left(-\frac{m}{l}\right) = l \times \left(-\frac{m}{l}\right) + m = -m + m = 0$$

Here,
$$p\left(-\frac{m}{l}\right) = 0$$
,

Hence,
$$x = -\frac{m}{l}$$
 is a solution of $p(x) = lx + m$.

$$=(-1)^3+(-1)^2+(-1)+1=-1+1-1+1=0$$

Since, remainder p(-1) = 0, hence g(x) is a factor of p(x).

(ii)
$$p(x) = x^3 + 3x^2 + 3x + 1$$
 and $g(x) = x + 2$

Putting x + 2 = 0, we get, x = -2

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by g(x) = x + 2, remainder is given by p(-2)

$$=(-2)^3+3(-2)^2+3(-2)+1=-8+12-6+1=-1$$

Since, remainder $p(-2) \neq 0$, hence g(x) is not a factor of p(x).

(iii)
$$p(x) = x^3 - 4x^2 + x + 6$$
 and $g(x) = x - 3$

Putting x - 3 = 0, we get, x = 3

Using remainder theorem, when $p(x) = x^3 - 4x^2 + x + 6$ is divided by g(x) = x - 3, remainder is given by p(3)

$$= (3)^3 - 4(3)^2 + (3) + 6 = 27 - 36 + 3 + 6 = 0$$

Since, remainder p(3) = 0, hence g(x) is a factor of p(x).

Question 3:

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

(i)
$$p(x) = x^2 + x + k$$

(ii)
$$p(x) = 2x^2 + kx + \sqrt{2}$$

(iii)
$$p(x) = kx^2 - \sqrt{2}x + 1$$

(iv)
$$p(x) = kx^2 - 3x + k$$

Answer 3:

(i)
$$p(x) = x^2 + x + k$$

Putting x - 1 = 0, we get, x = 1

Using remainder theorem, when $p(x) = x^2 + x + k$ is divided by x - 1, remainder is given by $p(1) = (1)^2 + (1) + k = 2 + k$

Since x-1 is a factor of p(x), hence remainder $p(1)=0 \Rightarrow 2+k=0 \Rightarrow k=-2$

(ii)
$$p(x) = 2x^2 + kx + \sqrt{2}$$

Putting x - 1 = 0, we get, x = 1

Using remainder theorem, when $p(x) = 2x^2 + kx + \sqrt{2}$ is divided by x - 1, remainder is given by $p(1) = 2(1)^2 + k(1) + \sqrt{2} = 2 + k + \sqrt{2}$

Since x-1 is a factor of p(x), hence remainder $p(1)=0 \Rightarrow 2+k+\sqrt{2}=0 \Rightarrow k=-2-\sqrt{2}$

(iii)
$$p(x) = kx^2 - \sqrt{2}x + 1$$

Putting x - 1 = 0, we get, x = 1

Using remainder theorem, when $p(x) = kx^2 - \sqrt{2}x + 1$ is divided by x - 1, remainder is given by p(1)

$$=k(1)^2-\sqrt{2}(1)+1=k-\sqrt{2}+1$$

Since x-1 is a factor of p(x), hence remainder $p(1)=0 \Rightarrow k-\sqrt{2}+1=0 \Rightarrow k=\sqrt{2}-1$

(iv)
$$p(x) = kx^2 - 3x + k$$

Putting x - 1 = 0, we get, x = 1

(Chapter - 2)(Polynomials)

(Class - 9)

Using remainder theorem, when $p(x) = kx^2 - 3x + k$ is divided by x - 1, remainder is given by $p(1) = k(1)^2 - 3(1) + k = 2k - 3$

Since x-1 is a factor of p(x), hence remainder $p(1)=0 \Rightarrow 2k-3=0 \Rightarrow k=\frac{3}{2}$

Question 4:

Factorise:

(i)
$$12x^2 - 7x + 1$$

(iii)
$$6x^2 + 5x - 6$$

Answer 4:

(i)
$$12x^2 - 7x + 1$$

$$=12x^2-(4+3)x+1$$

$$=12x^2-4x-3x+1$$

$$=4x(3x-1)-1(3x-1)$$

$$=(3x-1)(4x-1)$$

(iii)
$$6x^2 + 5x - 6$$

$$=6x^2+(9-4)x-6$$

$$=6x^2+9x-4x-6$$

$$=3x(2x+3)-2(2x+3)$$

$$=(2x+3)(3x-2)$$

(ii)
$$2x^2 + 7x + 3$$

(iv)
$$3x^2 - x - 4$$

(ii)
$$2x^2 + 7x + 3$$

$$=2x^2+(6+1)x+3$$

$$=2x^2+6x+x+3$$

$$= 2x(x+3) + 1(x+3)$$

$$=(x+3)(2x+1)$$

(iv)
$$3x^2 - x - 4$$

$$=3x^2-(4-3)x-4$$

$$=3x^2-4x+3x-4$$

$$=x(3x-4)+1(3x-4)$$

$$=(3x-4)(x+1)$$

Question 5:

Factorise:

(i)
$$x^3 - 2x^2 - x + 2$$

(iii)
$$x^3 + 13x^2 + 32x + 20$$

Answer 5:

(i)
$$x^3 - 2x^2 - x + 2$$

Let
$$p(x) = x^3 - 2x^2 - x + 2$$

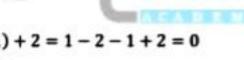
Putting x = 1, we get

$$p(1) = (1)^3 - 2(1)^2 - (1) + 2 = 1 - 2 - 1 + 2 = 0$$

 $\Rightarrow x - 1$ is a factor of p(x).

(ii)
$$x^3 - 3x^2 - 9x - 5$$

(iv)
$$2y^3 + y^2 - 2y - 1$$



$$\begin{array}{r}
 x^2 - x - 2 \\
 x^3 - 2x^2 - x + 2 \\
 x^3 - x^2 \\
 - + \\
 -x^2 - x + 2 \\
 -x^2 + x \\
 + - \\
 -2x + 2 \\
 -2x + 2 \\
 -2x + 2 \\
 - 2x + 2
 \end{array}$$

So,
$$p(x) = (x-1)(x^2-x-2)$$

= $(x-1)(x^2-x-2) = (x-1)[x^2-(2-1)x-2]$
= $(x-1)[x^2-2x+x-2] = (x-1)[x(x-2)+1(x-2)]$
= $(x-1)(x-2)(x+1)$

(iv)
$$2y^3 + y^2 - 2y - 1$$

Let $p(y) = y^3 + y^2 - 2y - 1$
Putting $y = -1$, we get
 $p(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1 = -2 + 1 + 2 - 1 = 0$
 $\Rightarrow y + 1$ is a factor of $p(y)$.

So,
$$p(y) = (y + 1)(2y^2 - y - 1)$$

= $(y + 1)(2y^2 - y - 1)$
= $(y + 1)[2y^2 - (2 - 1)y - 1]$
= $(y + 1)[2y^2 - 2y + y - 1]$
= $(y + 1)[2y(y - 1) + 1(y - 1)]$
= $(y + 1)(y - 1)(2y + 1)$

(vii)
$$p(x) = 3x^2 - 1$$
; $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$

Putting $x = -\frac{1}{\sqrt{3}}$, we get

$$p\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1 = 3 \times \frac{1}{3} - 1 = 1 - 1 = 0$$

Here,
$$p\left(-\frac{1}{\sqrt{3}}\right) = 0$$
, Hence, $x = -\frac{1}{\sqrt{3}}$ is a solution of $p(x) = 3x^2 - 1$.

Putting $x = \frac{2}{\sqrt{3}}$, we get

$$p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 = 3 \times \frac{4}{3} - 1 = 4 - 1 = 3$$

Here, $p\left(\frac{2}{\sqrt{3}}\right) \neq 0$, Hence, $x = \frac{2}{\sqrt{3}}$ is not a solution of $p(x) = 3x^2 - 1$.

(viii)
$$p(x) = 2x + 1$$
; $x = \frac{1}{2}$

Putting
$$x = \frac{1}{2}$$
, we get: $p(\frac{1}{2}) = 2 \times (\frac{1}{2}) + 1 = 1 + 1 = 2$

Here,
$$p\left(\frac{1}{2}\right) \neq 0$$
, Hence, $x = \frac{1}{2}$ is not a solution of $p(x) = 2x + 1$.

Question 4:

Find the zero of the polynomial in each of the following cases:

(i)
$$p(x) = x + 5$$
 (ii) $p(x) = x - 5$ (iii) $p(x) = 2x + 5$ (iv) $p(x) = 3x - 2$

(v)
$$p(x) = 3x$$
 (vi) $p(x) = ax$, $a \neq 0$ (vii) $p(x) = cx + d$; $c \neq 0$, c , d are real numbers.

Answer 4:

(i)
$$p(x) = x + 5$$

Putting
$$p(x) = 0$$
, we get: $x + 5 = 0 \Rightarrow x = -5$

Hence,
$$x = -5$$
 is a zero of the polynomial $p(x)$.

(ii)
$$p(x) = x - 5$$

Putting
$$p(x) = 0$$
, we get: $x - 5 = 0 \Rightarrow x = 5$

Hence,
$$x = 5$$
 is a zero of the polynomial $p(x)$.

(iii)
$$p(x) = 2x + 5$$

Putting
$$p(x) = 0$$
, we get: $2x + 5 = 0 \Rightarrow x = -\frac{5}{2}$

Hence,
$$x = -\frac{5}{2}$$
 is a zero of the polynomial $p(x)$.

(iv)
$$p(x) = 3x - 2$$

Putting
$$p(x) = 0$$
, we get: $3x - 2 = 0 \Rightarrow x = \frac{2}{3}$

Hence,
$$x = \frac{2}{3}$$
 is a zero of the polynomial $p(x)$.

(v)
$$p(x) = 3x$$

Putting
$$p(x) = 0$$
, we get: $3x = 0 \Rightarrow x = 0$

Hence,
$$x = 0$$
 is a zero of the polynomial $p(x)$.

(vi)
$$p(x) = ax$$
, $a \neq 0$

Putting
$$p(x) = 0$$
, we get: $ax = 0 \implies x = 0$

Hence,
$$x = 0$$
 is a zero of the polynomial $p(x)$.

(vii)
$$p(x) = cx + d$$
; $c \neq 0$, c , d are real numbers.

Putting
$$p(x) = 0$$
, we get: $cx + d = 0 \Rightarrow x = -\frac{d}{c}$

Hence,
$$x = -\frac{d}{c}$$
 is a zero of the polynomial $p(x)$.

(Chapter - 2)(Polynomials) (Class - 9) Exercise 2.3

Question 1:

Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by:

(i)
$$x + 1$$

(ii)
$$x - \frac{1}{2}$$

(iv)
$$x + \pi$$

$$(v) 5 + 2x$$

Answer 1:

Let
$$p(x) = x^3 + 3x^2 + 3x + 1$$

(i)
$$x + 1$$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by x + 1, remainder is given by p(-1)

$$= (-1)^3 + 3(-1)^2 + 3(-1) + 1$$

$$=-1+3-3+1$$

$$= 0$$

(ii)
$$x - \frac{1}{2}$$

Putting
$$x - \frac{1}{2} = 0$$
, we get, $x = \frac{1}{2}$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by $x - \frac{1}{2}$, remainder is given

by
$$p\left(\frac{1}{2}\right)$$

$$= \left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 1$$

$$=\frac{1}{8}+3\times\frac{1}{4}+3\times\frac{1}{2}+1$$

$$=\frac{1+6+12+8}{8}=\frac{27}{8}$$

(iii) x

Putting x = 0, we get

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by x, remainder is given by p(0)

$$=(0)^3 + 3(0)^2 + 3(0) + 1$$

$$= 0 + 1 = 0$$

(iv)
$$x + \pi$$

Putting
$$x + \pi = 0$$
, we get, $x = -\pi$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by $x + \pi$, remainder is given by $p(-\pi)$

$$= (-\pi)^3 + 3(-\pi)^2 + 3(-\pi) + 1$$

$$=-\pi^3+3\pi^2-3\pi+1$$

$$(v) 5 + 2x$$

Putting
$$5 + 2x = 0$$
, we get, $x = -\frac{5}{2}$

(Chapter - 2)(Polynomials)

(Class - 9)

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by 5 + 2x, remainder is given by $p\left(-\frac{5}{2}\right)$

$$= \left(-\frac{5}{2}\right)^3 + 3\left(-\frac{5}{2}\right)^2 + 3\left(-\frac{5}{2}\right) + 1$$

$$= -\frac{125}{8} + 3 \times \frac{25}{4} - 3 \times \frac{5}{2} + 1$$

$$= \frac{-125 + 150 - 60 + 8}{8}$$

$$= -\frac{27}{8}$$

Question 2:

Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.

Answer 2:

 $Let p(x) = x^3 - ax^2 + 6x - a$

Putting x - a = 0, we get, x = a

Using remainder theorem, when $p(x) = x^3 - ax^2 + 6x - a$ is divided by x - a, remainder is given by p(a)

$$=(a)^3-a(a)^2+6(a)-a$$

$$= a^3 - a^3 + 6a - a$$

= 5a

Question 3:

Check whether 7 + 3x is a factor of $3x^3 + 7x$.

Answer 3:

Let
$$p(x) = 3x^3 + 7x$$

Putting
$$7 + 3x = 0$$
, we get, $x = -\frac{7}{3}$

Using remainder theorem, when $p(x) = 3x^3 + 7x$ is divided by 7 + 3x, remainder is given by $p\left(-\frac{7}{3}\right)$

$$=3\left(-\frac{7}{3}\right)^3+7\left(-\frac{7}{3}\right)$$

$$=-\frac{343}{27}-\frac{49}{3}$$

$$=\frac{-343-147}{9}=-\frac{490}{9}$$

Since, remainder $p\left(-\frac{7}{3}\right) \neq 0$, hence, 7 + 3x is not a factor of $3x^3 + 7x$.

Exercise 2.4

Question 1:

Determine which of the following polynomials has x + 1 a factor:

(i)
$$x^3 + x^2 + x + 1$$

(ii)
$$x^4 + x^3 + x^2 + x + 1$$

(iii)
$$x^4 + 3x^3 + 3x^2 + x + 1$$

(iv)
$$x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$

Answer 1:

(i) Let
$$p(x) = x^3 + x^2 + x + 1$$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = x^3 + x^2 + x + 1$ is divided by x + 1, remainder is given by p(-1)

$$=(-1)^3+(-1)^2+(-1)+1=-1+1-1+1=0$$

Since, remainder p(-1) = 0, hence x + 1 is a factor of $x^3 + x^2 + x + 1$.

(ii) Let
$$p(x) = x^4 + x^3 + x^2 + x + 1$$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = x^4 + x^3 + x^2 + x + 1$ is divided by x + 1, remainder is given by p(-1)

$$= (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1 = 1 - 1 + 1 - 1 + 1 = 1$$

Since, remainder $p(-1) \neq 0$, hence x + 1 is not a factor of $x^4 + x^3 + x^2 + x + 1$.

(iii) Let
$$p(x) = x^4 + 3x^3 + 3x^2 + x + 1$$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = x^4 + 3x^3 + 3x^2 + x + 1$ is divided by x + 1, remainder is given by p(-1)

$$= (-1)^4 + 3(-1)^3 + 3(-1)^2 + (-1) + 1 = 1 - 3 + 3 - 1 + 1 = 1$$

Since, remainder $p(-1) \neq 0$, hence x + 1 is not a factor of $x^4 + 3x^3 + 3x^2 + x + 1$.

(iv) Let
$$p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$ is divided by x + 1, remainder is given by p(-1)

$$= (-1)^3 - (-1)^2 - (2 + \sqrt{2})(-1) + \sqrt{2} = -1 - 1 + 2 + \sqrt{2} + \sqrt{2} = 2\sqrt{2}$$

Since, remainder $p(-1) \neq 0$, hence x + 1 is not a factor of $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$.

Question 2:

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i)
$$p(x) = 2x^3 + x^2 - 2x - 1$$
, $g(x) = x + 1$ (ii) $p(x) = x^3 + 3x^2 + 3x + 1$, $g(x) = x + 2$ (iii) $p(x) = x^3 - 4x^2 + x + 6$, $g(x) = x - 3$

Answer 2:

(i)
$$p(x) = 2x^3 + x^2 - 2x - 1$$
 and $g(x) = x + 1$

Putting
$$x + 1 = 0$$
, we get, $x = -1$

Using remainder theorem, when $p(x) = 2x^3 + x^2 - 2x - 1$ is divided by g(x) = x + 1, remainder is given by p(-1)

(ii)
$$x^3 - 3x^2 - 9x - 5$$

Let $p(x) = x^3 - 3x^2 - 9x - 5$

Putting
$$x = 1$$
, we get

$$p(1) = (1)^3 - 3(1)^2 - 9(1) - 5 = 1 - 3 - 9 - 5 = -16 \neq 0$$

Putting x = -1, we get

$$p(-1) = (-1)^3 - 3(-1)^2 - 9(-1) - 5 = -1 - 3 + 9 - 5 = 0$$

 $\Rightarrow x + 1$ is a factor of p(x).

$$\begin{array}{r}
x^2 - 4x - 5 \\
x^3 - 3x^2 - 9x - 5 \\
x^3 + x^2 \\
- - \\
-4x^2 - 9x - 5 \\
-4x^2 - 4x \\
+ + \\
- 5x - 5 \\
-5x - 5 \\
+ + +
\end{array}$$

So,
$$p(x) = (x + 1)(x^2 - 4x - 5)$$

$$=(x+1)(x^2-4x-5)$$

$$=(x+1)[x^2-(5-1)x-5]$$

$$=(x+1)[x^2-5x+x-5]$$

$$=(x+1)[x(x-5)+1(x-5)]$$

$$=(x+1)(x-5)(x+1)$$

(iii)
$$x^3 + 13x^2 + 32x + 20$$

Let
$$p(x) = x^3 + 13x^2 + 32x + 20$$

Putting x = -1, we get

$$p(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20 = -1 + 13 - 32 + 20 = 0$$

$$\Rightarrow x + 1 \text{ is a factor of } p(x).$$

$$\begin{array}{r}
x^2 + 12x + 20 \\
x^3 + 13x^2 + 32x + 20 \\
x^3 + x^2 \\
- - \\
\hline
12x^2 + 32x + 20 \\
12x^2 + 12x \\
- - \\
\hline
20x + 20 \\
20x + 20
\end{array}$$

So,
$$p(x) = (x+1)(x^2+12x+20)$$

$$=(x+1)(x^2+12x+20)$$

$$=(x+1)[x^2+(10+2)x+20]$$

$$= (x+1)[x^2+10x+2x+20] = (x+1)[x(x+10)+2(x+10)]$$

$$=(x+1)(x+10)(x+2)$$

Exercise 2.5

Question 1:

Use suitable identities to find the following products:

(i)
$$(x+4)(x+10)$$

(iii)
$$(x+8)(x-10)$$

(iii)
$$(3x+4)(3x-5)$$

(iv)
$$(y^2 + \frac{3}{2})(y^2 - \frac{3}{2})$$

(v)
$$(3-2x)(3+2x)$$

Answer 1:

(i)
$$(x+4)(x+10)$$

$$= x^2 + (4+10)x + 4 \times 10$$

$$[\because (x+a)(x+b) = x^2 + (a+b)x + ab]$$

$$=x^2+14x+40$$

(ii)
$$(x+8)(x-10)$$

$$= x^2 + (8 - 10)x + 8 \times (-10)$$

$$[\because (x+a)(x+b) = x^2 + (a+b)x + ab]$$

$$=x^2-2x-80$$

(iii)
$$(3x+4)(3x-5)$$

$$= (3x)^2 + (4-5)3x + 4 \times (-5)$$

$$[:(x+a)(x+b) = x^2 + (a+b)x + ab]$$

=
$$9x^2 - 3x - 20$$

(iv) $\left(y^2 + \frac{3}{2}\right)\left(y^2 - \frac{3}{2}\right)$

$$=(y^2)^2-\left(\frac{3}{2}\right)^2$$

$$[\because (a+b)(a-b) = a^2 - b^2]$$

$$=y^4-\frac{9}{4}$$

(v)
$$(3-2x)(3+2x)$$

$$=(3)^2-(2x)^2$$

$$= (3)^2 - (2x)^2$$
$$= 9 - 4x^2$$

$$[: (a+b)(a-b) = a^2 - b^2]$$

Question 2:

Evaluate the following products without multiplying directly:

Answer 2:

$$=(100+3)(100+7)$$

$$=(100)^2+(3+7)100+3\times7$$

$$[: (x+a)(x+b) = x^2 + (a+b)x + ab]$$

$$= 10000 + 1000 + 21 = 11021$$

$$(100 - 5)(100 - 4)$$

$$= (100)^2 + (-5-4)100 + (-5) \times (-4) \quad [\because (x+a)(x+b) = x^2 + (a+b)x + ab]$$

$$= 10000 - 900 + 20 = 9120$$

$$(100+4)(100-4)=(100)^2-(4)^2$$
 [: $(a+b)(a-b)=a^2-b^2$]

$$[\because (a+b)(a-b) = a^2 - b^2]$$

= 10000 - 16 = 9984

Question 3:

Factorise the following using appropriate identities:

(i)
$$9x^2 + 6xy + y^2$$

(ii)
$$4y^2 - 4y + 1$$

(iii)
$$x^2 - \frac{y^2}{100}$$

Question 5:

Factorise:

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$$

Answer 5:

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

$$= (2x)^2 + (3y)^2 + (-4z)^2 + 2 \times (2x) \times 3y + 2 \times 3y \times (-4z) + 2 \times (-4z) \times (2x)$$

= $(2x + 3y - 4z)^2$

$$[\because a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2]$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$$

$$= (\sqrt{2}x)^{2} + (-y)^{2} + (-2\sqrt{2}z)^{2} + 2(\sqrt{2}x)(-y) + 2(-y)(-2\sqrt{2}z) + 2(-2\sqrt{2}z)(\sqrt{2}x)$$

$$= \left(\sqrt{2}x - y - 2\sqrt{2}z\right)^2$$

$$[\because a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2]$$

Question 6:

Write the following cubes in expanded form:

(i)
$$(2x+1)^3$$

(ii)
$$(2a - 3b)^3$$

(iii)
$$\left[\frac{3}{5}x + 1\right]^{\frac{1}{2}}$$

(iii)
$$\left[\frac{3}{2}x+1\right]^3$$
 (iv) $\left[x-\frac{2}{3}y\right]^3$

Answer 6:

(i)
$$(2x+1)^3$$

$$= (2x)^3 + 1^3 + 3(2x)^2(1) + 3(2x)(1)^2$$

$$[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

$$=8x^3+1+12x^2+6x$$

(ii)
$$(2a - 3b)^3$$

$$= (2a)^3 + (-3b)^3 + 3(2a)^2(-3b) + 3(2a)(-3b)^2$$

$$[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

$$=8a^3-27b^3-36a^2b+54ab^2$$

(iii)
$$\left[\frac{3}{2}x + 1\right]^3$$

$$= \left(\frac{3}{2}x\right)^3 + 1^3 + 3\left(\frac{3}{2}x\right)^2(1) + 3\left(\frac{3}{2}x\right)(1)^2$$

$$[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

$$=\frac{27}{8}x^3+1+\frac{27}{4}x^2+\frac{9}{2}x$$

(iv)
$$\left[x - \frac{2}{3} y \right]^3$$

$$= (x)^3 + \left(-\frac{2}{3}y\right)^3 + 3(x)^2\left(-\frac{2}{3}y\right) + 3(x)\left(-\frac{2}{3}y\right)^2$$
[: $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$]

$$=x^3-\frac{8}{27}y^3-2x^2y+\frac{4}{3}xy^2$$

Question 7:

Evaluate the following using suitable identities:

(i)
$$(99)^3$$

(ii)
$$(102)^3$$

Answer 3:

(i)
$$9x^2 + 6xy + y^2$$

= $(3x)^2 + 2 \times 3x \times y + y^2$
= $(3x + y)^2$ [: $a^2 + 2ab + b^2 = (a + b)^2$]
(ii) $4y^2 - 4y + 1$
= $(2y)^2 - 2 \times 2y \times 1 + 1^2$
= $(2y - 1)^2$ [: $a^2 - 2ab + b^2 = (a - b)^2$]
(iii) $x^2 - \frac{y^2}{100}$
= $x^2 - \left(\frac{y}{10}\right)^2$
= $(x + \frac{y}{10})(x - \frac{y}{10})$ [: $a^2 - b^2 = (a + b)(a - b)$]

Question 4:

Expand each of the following, using suitable identities:

(i)
$$(x + 2y + 4z)^2$$
 (ii) $(2x - y + z)^2$ (iii) $(-2x + 3y + 2z)^2$ (iv) $(3a - 7b - c)^2$ (v) $(-2x + 5y - 3z)^2$ (vi) $\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$

Answer 4:

(i)
$$(x + 2y + 4z)^2$$

= $x^2 + (2y)^2 + (4z)^2 + 2 \times (x) \times (2y) + 2 \times (2y) \times (4z) + 2 \times (4z) \times (x)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 4zx$
(ii) $(2x - y + z)^2$
= $(2x)^2 + (-y)^2 + (z)^2 + 2 \times (2x) \times (-y) + 2 \times (-y) \times (z) + 2 \times (z) \times (2x)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $4x^2 + y^2 + z^2 - 4xy - 2yz + 4zx$
(iii) $(-2x + 3y + 2z)^2$
= $(-2x)^2 + (3y)^2 + (2z)^2 + 2 \times (-2x) \times (3y) + 2 \times (3y) \times (2z) + 2 \times (2z) \times (-2x)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $4x^2 + 9y^2 + 4z^2 - 12xy + 12yz - 8zx$
(iv) $(3a - 7b - c)^2$
= $(3a)^2 + (-7b)^2 + (-c)^2 + 2 \times (3a) \times (-7b) + 2 \times (-7b) \times (-c) + 2 \times (-c) \times (3a)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca$
(v) $(-2x + 5y - 3z)^2$
= $(-2x)^2 + (5y)^2 + (-3z)^2 + 2 \times (-2x) \times 5y + 2 \times 5y \times (-3z) + 2 \times (-3z) \times (-2x)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx$
(vi) $\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$
= $\left(\frac{1}{4}a\right)^2 + \left(-\frac{1}{2}b\right)^2 + 1^2 + 2 \times \left(\frac{1}{4}a\right) \times \left(-\frac{1}{2}b\right) + 2 \times \left(-\frac{1}{2}b\right) \times 1 + 2 \times 1 \times \left(\frac{1}{4}a\right)$
[: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]
= $\frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{1}{4}ab - b + \frac{1}{2}a$

Answer 7:

(i)
$$(99)^3$$

 $(100-1)^3$
 $= (100)^3 + (-1)^3 + 3(100)^2(-1) + 3(100)(-1)^2$
 $[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$
 $= 1000000 - 1 - 30000 + 300 = 970299$
(ii) $(102)^3$
 $(100+2)^3$
 $= (100)^3 + (2)^3 + 3(100)^2(2) + 3(100)(2)^2$
 $[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$
 $= 1000000 + 8 + 60000 + 1200 = 1061208$
(iii) $(998)^3$
 $(1000-2)^3$
 $= (1000)^3 + (-2)^3 + 3(1000)^2(-2) + 3(1000)(-2)^2$
 $[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$
 $= 10000000000 - 8 - 6000000 + 12000 = 994011992$

Question 8:

Factorise each of the following:

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

(iii)
$$27 - 125a^3 - 135a + 225a^2$$

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

(ii) $8a^3 - b^3 - 12a^2b + 6ab^2$

(iv)
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

Answer 8:

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

$$= (2a)^3 + (b)^3 + 3(2a)^2(b) + 3(2a)(b)^2$$

$$= (2a+b)^3 \qquad [\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

(ii)
$$8a^3 - b^3 - 12a^2b + 6ab^2$$

$$= (2a)^3 + (-b)^3 + 3(2a)^2(-b) + 3(2a)(-b)^2$$

$$= (2a-b)^3 \qquad [\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

(iii)
$$27 - 125a^3 - 135a + 225a^2$$

$$= (3)^3 + (-5a)^3 + 3(3)^2(-5a) + 3(3)(-5a)^2$$

$$= (3-5a)^3 \qquad [\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

(iv)
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

$$= (4a)^3 + (-3b)^3 + 3(4a)^2(-3b) + 3(4a)(-3b)^2$$

$$= (4a - 3b)^3 \qquad [\because (a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2]$$

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

$$= (3p)^3 + \left(-\frac{1}{6}\right)^3 + 3(3p)^2 \left(-\frac{1}{6}\right) + 3(3p) \left(-\frac{1}{6}\right)^2$$

$$= \left(3p - \frac{1}{6}\right)^3 \qquad \left[\because (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2\right]$$

Question 9:

Verify:

(i)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
 (ii) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

Question 13:

If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$.

Answer 13:

We know that $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ If x + y + z = 0, then $x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - yz - zx)$ $\Rightarrow x^3 + y^3 + z^3 - 3xyz = 0 \Rightarrow x^3 + y^3 + z^3 = 3xyz$

Question 14:

Without actually calculating the cubes, find the value of each of the following:

(i)
$$(-12)^3 + (7)^3 + (5)^3$$

(ii) $(28)^3 + (-15)^3 + (-13)^3$

Answer 14:

(i) $(-12)^3 + (7)^3 + (5)^3$ Let, a = -12, b = 7, c = 5So, a + b + c = -12 + 7 + 5 = 0

We know that if a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$

Therefore, $(-12)^3 + (7)^3 + (5)^3 = 3(-12)(7)(5) = -1260$

(ii) $(28)^3 + (-15)^3 + (-13)^3$

Let, a = 28, b = -15, c = -13, so, a + b + c = 28 - 15 - 13 = 0

We know that if a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$

Therefore, $(28)^3 + (-15)^3 + (-13)^3 = 3(28)(-15)(-13) = 16380$

Question 15:

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

(i) Area: $25a^2 - 35a + 12$

(ii) Area: 35y² + 13y - 12

Answer 15:

(i) Area: $25a^2 - 35a + 12$

 $= 25a^2 - 20a - 15a + 12 = 5a(5a - 4) - 3(5a - 4) = (5a - 4)(5a - 3)$

Therefore, length = (5a-3) and breadth = (5a-4) [as (5a-3) > (5a-4)]

(ii) Area: $35y^2 + 13y - 12$

 $=35y^2+28y-15y-12=7y(5y+4)-3(5y+4)=(5y+4)(7y-3)$

Therefore, length = (5y + 4) and breadth = (7y - 3)

Question 16:

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

(i) Volume =
$$3x^2 - 12x$$

(ii) Volume =
$$12ky^2 + 8ky - 20k$$

Answer 16:

(i) Volume = $3x^2 - 12x$

$$=3x(x-4)=(3)(x)(x-4)$$

Hence, the possible dimensions of the cuboids are 3, x and x - 4.

(ii) Volume = $12ky^2 + 8ky - 20k$

$$= 4k(3y^2 + 2y - 5) = 4k(3y^2 + 5y - 3y - 5) = 4k[y(3y + 5) - 1(3y + 5)]$$

= $(4k)(3y + 5)(y - 1)$

Hence, the possible dimensions of the cuboids are 4k, (3y + 5) and (y - 1).

Answer 9:

(i)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

RHS
= $(x + y)(x^2 - xy + y^2) = x(x^2 - xy + y^2) + y(x^2 - xy + y^2)$
= $x^3 - x^2y + xy^2 + yx^2 - xy^2 + y^3 = x^3 + y^3 = LHS$
(ii) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$
RHS
= $(x - y)(x^2 + xy + y^2) = x(x^2 + xy + y^2) - y(x^2 + xy + y^2)$
= $x^3 + x^2y + xy^2 - yx^2 - xy^2 - y^3 = x^3 - y^3 = LHS$

Question 10:

Factorise each of the following:

(i)
$$27y^3 + 125z^3$$

$$(ii) 64m^3 - 343n^3$$

Answer 10: (i) $27y^3 + 125z^3$

$$= (3y)^3 + (5z)^3$$

$$= (3y + 5z)[(3y)^2 - (3y)(5z) + (5z)^2]$$

$$= (3y + 5z)(9y^2 - 15yz + 25z^2)$$

$$=(4m)^3-(3n)^3$$

$$= (4m - 3n)[(4m)^2 + (4m)(3n) + (3n)^2]$$

= $(4m - 3n)(16m^2 + 12mn + 9n^2)$

$$[\because x^3 - y^3 = (x - y)(x^2 + xy + y^2)]$$

 $[\because x^3 + y^3 = (x + y)(x^2 - xy + y^2)]$

Question 11:

Factorise: $27x^3 + y^3 + z^3 - 9xyz$

Answer 11:

$$27x^{3} + y^{3} + z^{3} - 9xyz = (3x)^{3} + y^{3} + z^{3} - 3(3x)yz$$

$$= (3x + y + z)[(3x)^{2} + y^{2} + z^{2} - (3x)y - yz - z(3x)]$$

$$[\because a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)]$$

$$= (3x + y + z)(9x^{2} + y^{2} + z^{2} - 3xy - yz - 3zx)$$

Question 12:

Verify that:
$$x^3 + y^3 + z^3 - 3xyz = \frac{1}{2}(x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]$$

Answer 12:

$$RHS = \frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$$

$$= \frac{1}{2}(x+y+z)[x^2+y^2-2xy+y^2+z^2-2yz+z^2+x^2-2zx][\because (a-b)^2 = a^2+b^2-2ab]$$

$$= \frac{1}{2}(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)$$

$$= \frac{1}{2} \times 2(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$

$$= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$

$$= x^3+y^3+z^3-3xyz=LHS$$

$$[\because (a+b+c)(a^2+b^2+c^2-ab-bc-ca) = a^3+b^3+c^3-3abc]$$